Deprecated: Creation of dynamic property quick_page_post_reds::$ppr_metaurl is deprecated in /var/www/html/wp-content/plugins/quick-pagepost-redirect-plugin/page_post_redirect_plugin.php on line 97

Deprecated: Creation of dynamic property quick_page_post_reds::$pprshowcols is deprecated in /var/www/html/wp-content/plugins/quick-pagepost-redirect-plugin/page_post_redirect_plugin.php on line 99

Deprecated: Creation of dynamic property quick_page_post_reds::$ppr_newwindow is deprecated in /var/www/html/wp-content/plugins/quick-pagepost-redirect-plugin/page_post_redirect_plugin.php on line 1531
BREAST-CANCER-SCREENING-DBT - The Cancer Imaging Archive (TCIA)
Deprecated: preg_split(): Passing null to parameter #2 ($subject) of type string is deprecated in /var/www/html/wp-includes/formatting.php on line 3494

Deprecated: preg_split(): Passing null to parameter #2 ($subject) of type string is deprecated in /var/www/html/wp-includes/formatting.php on line 3494
Skip to main content

BREAST-CANCER-SCREENING-DBT


Notice: Function Pods Templates was called incorrectly. Pod Template PHP code is no longer actively supported and will be completely removed in Pods 3.3 Please see Debugging in WordPress for more information. (This message was added in version 3.0.) in /var/www/html/wp-includes/functions.php on line 6085

Deprecated: Pod Template PHP code has been deprecated, please use WP Templates instead of embedding PHP. has been deprecated since Pods version 2.3 with no alternative available. in /var/www/html/wp-content/plugins/pods/includes/general.php on line 1037
The Cancer Imaging Archive

Breast-Cancer-Screening-DBT | Breast Cancer Screening - Digital Breast Tomosynthesis

DOI: 10.7937/E4WT-CD02 | Data Citation Required | Image Collection

Location Species Subjects Data Types Cancer Types Size Supporting Data Status Updated
Breast Human 5,060 MG, Classification, Radiomic Feature, Measurement, Other Breast Cancer 1.63TB Clinical, Software/Source Code Public, Complete 2024/01/18

Summary

Breast cancer is among the most common cancers and a common cause of death among women. Over 39 million breast cancer screening exams are performed every year and are among the most common radiological tests. This creates a high need for accurate image interpretation. Machine learning has shown promise in interpretation of medical images. However, limited data for training and validation remains an issue.

Here, we share a curated dataset of digital breast tomosynthesis images that includes normal, actionable, biopsy-proven benign, and biopsy-proven cancer cases.  The dataset contains four components: (1) DICOM images, (2) a spreadsheet indicating which group each case belongs to (3) annotation boxes, and (4) Image paths for patients/studies/views.  A detailed description of this dataset can be found in the following paper; please reference this paper if you use this dataset:

M. Buda, A. Saha, R. Walsh, S. Ghate, N. Li, A. Święcicki, J. Y. Lo, M. A. Mazurowski, Detection of masses and architectural distortions in digital breast tomosynthesis: a publicly available dataset of 5,060 patients and a deep learning model. (https://doi.org/10.1001/jamanetworkopen.2021.19100).

Additional information and resources related to this dataset can be found here: https://sites.duke.edu/mazurowski/resources/digital-breast-tomosynthesis-database/

A Version 1 of the dataset contains only a subset of all data described in the paper above. More data will be share in subsequent versions.

Please visit this discussion forum for any questions related to the data: https://www.reddit.com/r/DukeDBTData/

Required Preprocessing of DBT Images

For some of the images, the laterality stored in the DICOM header and/or image orientation are incorrect. The reference standard "truth" boxes are defined with respect to the corrected image orientation in these instances. Therefore, it is crucial to provide your results for images in the correct image orientation. Python functions for loading image data from a DICOM file into 3D array of pixel values in the correct orientation and for displaying "truth" boxes (if any) are on GitHub. Please see the readme file there for instructions.

DBTex Lesion Detection Challenge Predictions

The DBTex lesion detection challenge tasked participating teams with detecting lesions in the BCS-DBT test set. The challenge had two phases: DBTex1 and DBTex2Here we provide the BCS-DBT lesion predictions made by all participating teams for both phases, for both the BCS-DBT test and validation sets, as “team_predictions_bothphases.zip”. Please see here under “Output format for the DBTex2 Challenge test set results” for a description of how these results are formatted. Finally, when comparing lesion bounding box predictions to the image data, be sure to load the images correctly according to the above “Required Preprocessing of DBT Images”.

If you use these predictions, please reference the DBTex challenge paper:

Konz N, Buda M, Gu H, et al. A Competition, Benchmark, Code, and Data for Using Artificial Intelligence to Detect Lesions in Digital Breast Tomosynthesis. JAMA Netw Open. 2023;6(2):e230524. doi:10.1001/jamanetworkopen.2023.0524

Data Access

Version 5: Updated 2024/01/18

Added spreadsheets:

  • Validation set – Spreadsheet indicating which group each case belongs to (see the paper for details on the groups).
  • Validation set – Boxes indicating lesion locations.
  • Test set – Spreadsheet indicating which group each cases belongs to (see the paper for details on the groups)
  • Test set – Boxes indicating lesion locations

Title Data Type Format Access Points Subjects Studies Series Images License
Training set - Images MG DICOM
Download requires NBIA Data Retriever
4,362 4,838 19,148 19,148 CC BY-NC 4.0
Training set - Image paths for patients/studies/views Other CSV 4,362 4,838 CC BY-NC 4.0
Training set - Spreadsheet indicating which group each case belongs to (see the paper for details on the groups) Classification CSV 4,362 4,838 CC BY-NC 4.0
Training set - Boxes indicating lesion locations, identical to Phase 1 Measurement CSV 101 101 CC BY-NC 4.0
Validation set - Images MG DICOM
Download requires NBIA Data Retriever
280 312 1,163 1,163 CC BY-NC 4.0
Validation set - Image paths for patients/studies/views Other CSV 280 312 CC BY-NC 4.0
Validation set - Spreadsheet indicating which group each case belongs to (see the paper for details on the groups) Classification CSV 280 312 CC BY-NC 4.0
Validation set - Boxes indicating lesion locations Radiomic Feature CSV 40 40 CC BY-NC 4.0
Test set - Images MG DICOM 418 460 1,721 1,721 CC BY-NC 4.0
Test set - Image paths for patients/studies/views Other CSV 418 460 CC BY-NC 4.0
Test set - Spreadsheet indicating which group each cases belongs to (see the paper for details on the groups) Classification CSV 418 460 CC BY-NC 4.0
Test set - Boxes indicating lesion locations Radiomic Feature CSV 60 60 CC BY-NC 4.0
team predictions both phases Measurement ZIP and CSV CC BY-NC 4.0
Related Datasets
No related Analysis Results found: Submit your proposal! No related Collections found
Legend: Analysis Results| Collections

Additional Resources for this Dataset

The NCI Cancer Research Data Commons (CRDC) provides access to additional data and a cloud-based data science infrastructure that connects data sets with analytics tools to allow users to share, integrate, analyze, and visualize cancer research data.

The following external resources have been made available by the data submitters.  These are not hosted or supported by TCIA, but may be useful to researchers utilizing this collection.

Citations & Data Usage Policy

Data Citation Required: Users must abide by the TCIA Data Usage Policy and Restrictions. Attribution must include the following citation, including the Digital Object Identifier:

Data Citation

Buda, M., Saha, A., Walsh, R., Ghate, S., Li, N., Swiecicki, A., Lo, J. Y., Yang, J., & Mazurowski, M. (2020). Breast Cancer Screening – Digital Breast Tomosynthesis (BCS-DBT) (Version 5) [dataset]. The Cancer Imaging Archive. https://doi.org/10.7937/E4WT-CD02

Detailed Description

Dataset Split Details

This dataset was originally used for the DBTex2 challenge (https://www.aapm.org/GrandChallenge/DBTex2/), which contains a total of 22032 breast tomosynthesis scans from 5060 patients from this collection.  The dataset was broken down into the following cohorts for usage at the competition, a split that is maintained for this general release:

  1. Total: 22032 scans
  2. Training: 19148 scans
  3. Validation: 1163 scans
  4. Test: 1721 scans

Version 1, 2 and 3 of the page had a fraction of each of these subsets released, to accompany phase 1 of the aforementioned competition, DBTex.

Training set (with truth): 

The training set consists of 19148 cases. This dataset will be representative of the technical properties (equipment, acquisition parameters, file format) and the nature of lesions in the validation and test sets. An associated Excel file in CSV format will include DBT scan identifier and the definition of the bounding box of all lesions.

Validation set (without truth): 

The validation set consists of 1163 cases.

Test set (without truth): 

The test set consists of 1721 cases.

FREQUENTLY ASKED QUESTIONS

Below are some curated important questions for this dataset along with answers from https://sites.duke.edu/mazurowski/resources/digital-breast-tomosynthesis-database/. For more discussion, visit https://www.reddit.com/r/DukeDBTData/.


Question: Is there a code repository for reading images, drawing bounding boxes, and helper functions related to this database?

Answer: Yes. Please use the following link: https://github.com/MaciejMazurowski/duke-dbt-data


Question: Could you explain the image files/format present for each study?

Answer: One DICOM file or image consists of an entire 3D volume (view). These images are stored in compressed DICOM format.


Question: Which software/tools can I use to read the images?

Answer: You may use a variety of software packages to read the images. We successfully opened the images with the following software: 3D Slicer, ITK-SNAP, Radiant, MicroDICOM, Matlab, and GDCM.


Question: Do I need to know the pre-processing steps, provided in the code repository, for the images?

Answer: It is important to look at the pre-processing steps we provided in the code repository. Please see the Python functions for reading image data from a DICOM file into 3D array of pixel values in the proper orientation and for displaying “truth” boxes (if present). Please also see the readme file there for instructions (https://github.com/MaciejMazurowski/duke-dbt-data). This is crucial as some of the image headers contain incorrect laterality or orientation. For these images, the reference standard “truth” boxes are provided with respect to the corrected image orientation.


Question: Are 4 views available for every study?

Answer: Though 4 views (2 per breast, craniocaudal and mediolateral oblique) are present for most of the studies, some exams have fewer than 4 views.


Question: What kind of encoding is used in the columns of the file ‘BCS-DBT labels-train-v2.csv’?

Answer: The columns “Cancer”, “Benign”, “Actionable”, “Normal” represent one-hot encoded assignment to a category. Details pertaining to these categories can be found in the Section 2.1: https://doi.org/10.1001/jamanetworkopen.2021.19100.


Question: How to interpret the “Slice” column in the data provided in the file ‘BCS-DBT boxes-train-v2.csv’?

Answer: A: The “Slice” column corresponds to the central slice of a biopsied lesion. More details on the image annotation are provided in the paper https://doi.org/10.1001/jamanetworkopen.2021.19100 (section 2.1.2). For evaluation, we assume that lesions span 25% of volume slices in each direction. It is reflected in the evaluation functions available on GitHub: https://github.com/MaciejMazurowski/duke-dbt-data/blob/master/duke_dbt_data.py


Question: How to interpret the columns of ‘BCS-DBT boxes-train-v2.csv’?

Answer:

  • PatientID: string – patient identifier
  • StudyUID: string – study identifier
  • View: string – view name, one of: RLL, LCC, RMLO, LMLO (you might see a numerical suffix after these if multiple images under one view are present)
  • Subject: integer – encodes a radiologist who performed annotation
  • Slice: integer- the central slice of a biopsied lesion
  • X: integer – X coordinate (on the horizontal axis) of the left edge of the predicted bounding box in 0-based indexing (for the left-most column of the image x=0)
  • Y: integer – Y coordinate (on the vertical axis) of the top edge of the predicted bounding box in 0-based indexing (for the top-most row of the image y=0)
  • Width: integer – predicted bounding box width (along the horizontal axis)
  • Height: integer – predicted bounding box height (along the vertical axis)
  • Class: string – either benign or cancer
  • AD: integer – 1 if architectural distortion is present, else 0
  • VolumeSlices: integer – The total number of slices in volume containing the bounding box (used in evaluation function)

Question: Why are the number of bounding boxes much less than the number of training samples?

Answer: The bounding boxes are applicable only to cases with biopsy-proven benign and cancer findings. The training set consists of cases with normal, actionable, benign, and cancer findings. For details on these categories, see Section 2.1: https://doi.org/10.1001/jamanetworkopen.2021.19100.


Question: Why can’t I find the path of a downloaded image in the csv file “Training set – Image paths for patients/studies/views (csv)”?

Answer: At times, you may need to replace “\” with “/” in the path of an image file to find the path in the csv file “Training set – Image paths for patients/studies/views (csv)”.


Question: Why are there both “descriptive_path” and “classic_path” in the .csv file ” Training set – Image paths for patients/studies/views (.csv)”?

Answer: When you download our data using the NBIA Data Retriever, there are two options (“Descriptive Directory Name” and “Classic Directory Name”) for selecting the Directory Type, that correspond to those two paths in the .csv file.


Question: Does the dataset contain microcalcifications?

Answer: It contains microcalcifications. However, they were not annotated and were not the cause for actionability or biopsy.


Question: Could you provide some examples of markers in the images?

Answer: Yes. Some examples are listed below. The images or their parts are taken from this collection under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

1. Circle for a raised area on the skin such as a mole (image 13345.000000-24122 from this collection)

Circle for a raised area

 

 

 

 

 

 

 

 

2. Line for a previous surgery (image 14338.000000-72252 from this collection)

Line for a previous surgery

 

 

 

 

 

 

3. Solid pellet for the nipple (image 8764.000000-63613 from this collection)

Solid pellet for the nipple

 

 

 

 

 

 

 

 

 

4. Markers for locations of pain (one or more spots, image 20566.000000-32081 from this collection)
Markers for locations of pain

Acknowledgements

We would like to acknowledge the individuals and institutions that have provided data for this collection:

  • Duke University Hospital/Duke University, Durham, NC, USA

  • We would like to acknowledge all those who contributed to the curation of this dataset

  • This work was supported by a grant from the NIH: 1 R01 EB021360 (PI: Mazurowski).

Related Publications

Publications by the Dataset Authors

The authors recommended this paper as the best source of additional information about this dataset:

  • Buda, M., Saha, A., Walsh, R., Ghate, S., Li, N., Swiecicki, A., Lo, J. Y., & Mazurowski, M. A. (2021). A Data Set and Deep Learning Algorithm for the Detection of Masses and Architectural Distortions in Digital Breast Tomosynthesis Images. In JAMA Network Open (Vol. 4, Issue 8, p. e2119100). American Medical Association (AMA). https://doi.org/10.1001/jamanetworkopen.2021.19100, PMC8369362

.

Publication Citation

Buda, M., Saha, A., Walsh, R., Ghate, S., Li, N., Swiecicki, A., Lo, J. Y., & Mazurowski, M. A. (2021). A Data Set and Deep Learning Algorithm for the Detection of Masses and Architectural Distortions in Digital Breast Tomosynthesis Images. In JAMA Network Open (Vol. 4, Issue 8, p. e2119100). American Medical Association (AMA). https://doi.org/10.1001/jamanetworkopen.2021.19100, PMC8369362

Research Community Publications

TCIA maintains a list of publications which leverage TCIA data. If you have a manuscript you’d like to add please contact TCIA’s Helpdesk.

Other Publications Using this Data

TCIA maintains a list of publications which leverage TCIA data. If you have a manuscript you’d like to add please contact TCIA’s Helpdesk.

Previous Versions

Version 3: Updated 2021/01/15

Test set – Images added.

Test set – Image paths for patients/studies/views spreadsheet added.

Title Data Type Format Access Points Subjects Studies Series Images License
Test set - Images DICOM
Test set - Image paths for patients/studies/views CSV
Validation set - Images DICOM
Validation set - Image paths for patients/studies/views CSV
Training set - Images DICOM
Training set - Image paths for patients/studies/views CSV
Training set - Boxes indicating lesion locations CSV
Training set - Spreadsheet indicating which group each cases belongs to (see the paper for details on the groups) CSV

Version 2: Updated 2021/01/04

Validation set – Images added.

Validation set – Image paths for patients/studies/views spreadsheet added.

Volume Slices column added to the Training set – Boxes indicating lesion locations spreadsheet.

Title Data Type Format Access Points Subjects Studies Series Images License
Validation set - Images DICOM
Validation set - Image paths for patients/studies/views CSV
Training set - Images DICOM
Training set - Image paths for patients/studies/views CSV
Training set - Boxes indicating lesion locations CSV
Training set - Spreadsheet indicating which group each cases belongs to (see the paper for details on the groups) CSV

Version 1: Updated 2020/12/14

Title Data Type Format Access Points Subjects Studies Series Images License
Training set - Images DICOM
Training set - Image paths for patients/studies/views CSV
Training set - Boxes indicating lesion locations CSV
Training set - Spreadsheet indicating which group each cases belongs to (see the paper for details on the groups) CSV