Deprecated: Creation of dynamic property quick_page_post_reds::$ppr_metaurl is deprecated in /var/www/html/wp-content/plugins/quick-pagepost-redirect-plugin/page_post_redirect_plugin.php on line 97

Deprecated: Creation of dynamic property quick_page_post_reds::$pprshowcols is deprecated in /var/www/html/wp-content/plugins/quick-pagepost-redirect-plugin/page_post_redirect_plugin.php on line 99

Deprecated: Creation of dynamic property quick_page_post_reds::$ppr_newwindow is deprecated in /var/www/html/wp-content/plugins/quick-pagepost-redirect-plugin/page_post_redirect_plugin.php on line 1531
ADVANCED-MRI-BREAST-LESIONS - The Cancer Imaging Archive (TCIA)
Deprecated: preg_split(): Passing null to parameter #2 ($subject) of type string is deprecated in /var/www/html/wp-includes/formatting.php on line 3494

Deprecated: preg_split(): Passing null to parameter #2 ($subject) of type string is deprecated in /var/www/html/wp-includes/formatting.php on line 3494
Skip to main content

ADVANCED-MRI-BREAST-LESIONS


Notice: Function Pods Templates was called incorrectly. Pod Template PHP code is no longer actively supported and will be completely removed in Pods 3.3 Please see Debugging in WordPress for more information. (This message was added in version 3.0.) in /var/www/html/wp-includes/functions.php on line 6085

Deprecated: Pod Template PHP code has been deprecated, please use WP Templates instead of embedding PHP. has been deprecated since Pods version 2.3 with no alternative available. in /var/www/html/wp-content/plugins/pods/includes/general.php on line 1037
The Cancer Imaging Archive

Advanced-MRI-Breast-Lesions | Standard and Delayed Contrast-Enhanced MRI of Malignant and Benign Breast Lesions with Histological and Clinical Supporting Data

DOI: 10.7937/C7X1-YN57 | Data Citation Required | Image Collection

Location Species Subjects Data Types Cancer Types Size Supporting Data Status Updated
Breast Human 632 MR, SEG, Histopathology, Molecular Test, Classification, Demographic Breast Cancer 646GB Clinical Public, Complete 2024/04/15

Summary

The application of deep-learning methods to breast MRI has a potential to improve diagnosis as well as predict pathological features of the tumors and their response to therapy, and is currently widely investigated. Standard contrast-enhanced MRI of the breast provides high sensitivity but variable specificity in detecting breast cancer, and may lead to excessive benign biopsies. Large, well annotated datasets are needed to improve the current results in this field.

This dataset is a single-institutional, retrospective collection of 632 breast-MRI imaging sessions acquired on a 1.5T MR system between 2018-2021. Supporting data, collected for 200 patients from clinical notes, radiology reports and pathology reports, is included: patient age, lesion location, malignant/benign outcome, pathology and grade (if applicable), receptor status and KI67 (if applicable).

All enhancing/suspicious positions that were mentioned in the radiological reports were first delineated manually by a certified radiologist with 23 years of experience. Then, these regions were thresholded automatically, keeping the pixels in which the intensity of the first/second subtracted images (subtraction of the pre-contrast image from the first/second post-contrast image) were above the threshold of 75.

The main uniqueness of this data is that it contains the standard protocol series (T1-weighted DCE sequence with 5 time points- before and 4 time points after contrast injection, and T2-weighted MRI with/without fat suppression) as well as the delayed contrast T1-images acquired 20-28 minutes after contrast administration and the calculated treatment response assessment maps (TRAMs).

We recently introduced the utility of delayed-contrast MRI for calculating treatment response assessment maps (TRAMs) for improved specificity and accuracy in breast cancer diagnosis. The TRAMs are calculated by subtracting 3D T1-MRIs acquired 5 minutes post-contrast injection from those acquired ~22 minutes thus depicting the spatial distribution of contrast accumulation/clearance. Furthermore, the application of deep-learning methods to breast MRI has a potential to improve diagnosis as well as predict pathological features of the tumors and their response to therapy.

Data Access

Version 2: Updated 2024/04/15

SOP class UID was changed for all TRAM images from MR Image to Secondary Capture Image (623 series).

Title Data Type Format Access Points Subjects Studies Series Images License
Images, Segmentations MR, SEG DICOM
Download requires NBIA Data Retriever
632 632 6,811 1,259,688 CC BY 4.0
Clinical data Histopathology, Molecular Test, Classification, Demographic XLSX 200 CC BY 4.0
Related Datasets
No related Analysis Results found: Submit your proposal! No related Collections found
Legend: Analysis Results| Collections

Additional Resources for this Dataset

The NCI Cancer Research Data Commons (CRDC) provides access to additional data and a cloud-based data science infrastructure that connects data sets with analytics tools to allow users to share, integrate, analyze, and visualize cancer research data.

Citations & Data Usage Policy

Data Citation Required: Users must abide by the TCIA Data Usage Policy and Restrictions. Attribution must include the following citation, including the Digital Object Identifier:

Data Citation

Daniels, D., Last, D., Cohen, K., Mardor, Y., & Sklair-Levy, M. (2024). Standard and Delayed Contrast-Enhanced MRI of Malignant and Benign Breast Lesions with Histological and Clinical Supporting Data (Advanced-MRI-Breast-Lesions) (Version 2) [dataset]. The Cancer Imaging Archive. https://doi.org/10.7937/C7X1-YN57

Acknowledgements

We would like to acknowledge the individuals and institutions that have provided data for this collection:

  • This work was supported by the Israel Precision medicine partnership (IPMP) of the Israel Science Foundation (ISF), grant number 3400/19.
  • Harmonization of the components of this dataset, including into standard DICOM representation, was supported in part by the NCI Imaging Data Commons consortium. NCI Imaging Data Commons consortium is supported by the contract number 19X037Q from Leidos Biomedical Research under Task Order HHSN26100071 from NCI.

Related Publications

Publications by the Dataset Authors

The authors recommended this paper as the best source of additional information about this dataset:

  • We ask on the proposal form if they have ONE traditional publication they’d like users to cite.

No publications by dataset authors were found.

Publication Citation

We ask on the proposal form if they have ONE traditional publication they’d like users to cite.

Research Community Publications

No research community publications were found.

Previous Versions

Version 1: Updated 2024/02/01

Title Data Type Format Access Points Subjects Studies Series Images License
Images, Segmentations MR, SEG DICOM 632 632 6,811 1,259,688 CC BY 4.0
Clinical data Histopathology, Molecular Test, Classification XLSX 200 CC BY 4.0