Deprecated: Creation of dynamic property quick_page_post_reds::$ppr_metaurl is deprecated in /var/www/html/wp-content/plugins/quick-pagepost-redirect-plugin/page_post_redirect_plugin.php on line 97

Deprecated: Creation of dynamic property quick_page_post_reds::$pprshowcols is deprecated in /var/www/html/wp-content/plugins/quick-pagepost-redirect-plugin/page_post_redirect_plugin.php on line 99

Deprecated: Creation of dynamic property quick_page_post_reds::$ppr_newwindow is deprecated in /var/www/html/wp-content/plugins/quick-pagepost-redirect-plugin/page_post_redirect_plugin.php on line 1531
ISPY2 - The Cancer Imaging Archive (TCIA)
Deprecated: preg_split(): Passing null to parameter #2 ($subject) of type string is deprecated in /var/www/html/wp-includes/formatting.php on line 3494

Deprecated: preg_split(): Passing null to parameter #2 ($subject) of type string is deprecated in /var/www/html/wp-includes/formatting.php on line 3494
Skip to main content

ISPY2


Notice: Function Pods Templates was called incorrectly. Pod Template PHP code is no longer actively supported and will be completely removed in Pods 3.3 Please see Debugging in WordPress for more information. (This message was added in version 3.0.) in /var/www/html/wp-includes/functions.php on line 6085

Deprecated: Pod Template PHP code has been deprecated, please use WP Templates instead of embedding PHP. has been deprecated since Pods version 2.3 with no alternative available. in /var/www/html/wp-content/plugins/pods/includes/general.php on line 1037
The Cancer Imaging Archive

ISPY2 | I-SPY 2 Breast Dynamic Contrast Enhanced MRI Trial

DOI: 10.7937/TCIA.D8Z0-9T85 | Data Citation Required | Image Collection

Location Species Subjects Data Types Cancer Types Size Supporting Data Status Updated
Breast Human 719 SEG, MR, Other Breast Cancer 4.16TB Clinical, Image Analyses Public, Complete 2022/05/02

Summary

I-SPY 2 (Investigation of Serial studies to Predict Your Therapeutic Response with Imaging And moLecular analysis 2) is an ongoing, multi-center trial (NCT01042379) designed to quickly evaluate the efficacy of new agents for breast cancer in neoadjuvant chemotherapy (NAC) setting. Women aged ≥18 years diagnosed with locally advanced breast cancer (tumor size ≥2.5 cm) without distant metastasis are eligible to enroll in the trial. Patients with breast cancer at high-risk for recurrence are adaptively-randomized to either control arm (standard NAC) or one of several concurrent experimental drug arms. I-SPY 2 utilizes change in tumor volume by DCE-MRI at serial time-points during NAC to adjust the randomization schema as the trial proceeds, preferentially assigning patients to receive agents showing an increasing likelihood of efficacy against their breast cancer subtype. I-SPY 2 opened in Spring 2010 and is ongoing.

This collection includes DCE MRI data (original acquired images and derived parametric maps) for I-SPY 2 patients adaptively randomized between 2010 and 2016, along with histopathologic outcome data. Breast MRI data in this collection was acquired prospectively at over 22 clinical centers using a standardized image acquisition protocol. Patients underwent 4 MRI exams before and during NAC and over 95% of the DCE imaging data met acceptance criteria for analysis of functional tumor volume (FTV), a demonstrated quantitative imaging marker of breast cancer response to NAC. This is a comprehensive, highly curated imaging data set with histopathologic outcome that can be used to develop, test and compare imaging metrics and prediction models for breast cancer response to treatment. Original but uncurated T2weighted MRI images are also included for most studies.

719 patients are included in this collection. In combination with 266 patients from the ACRIN 6698/I-SPY2 Breast DWI Collection these 985 patients comprise "I-SPY2 Imaging Cohort 1", the 1st subgroup of publicly released imaging data from the I-SPY 2 TRIAL. All subjects in the I-SPY2 Imaging Cohort 1 were enrolled in I-SPY 2 from 2010 to 2016 and randomized to one of nine completed experimental drug arms or control arm. In order to obtain the MRI data for the entire I-SPY2 Imaging Cohort 1 please download using the manifest file provided in the Data Access table below as this will include the patients from both collections. Downloading this collection alone will result in an incomplete cohort of 719 patients and any results from that patient set will not be comparable to published results from the trial.

In addition, a retrospective study using a 384 patient subset (median age: 49 y/o) was performed to test if prediction models combining multiple MRI features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analysis was used to study the relationship between MRI variables and pathologic complete response (pCR). Predictive performance was estimated using the area under the receiver operating characteristic curve (AUC). The cohort was stratified by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status (positive or negative). Results showed analysis with combined features achieved higher AUCs than analysis with any feature alone.  These results are further described in the associated publication and in the multi-feature MRI spreadsheet included with this Collection.

I-SPY2 Imaging Biomarker Group

We are establishing the I-SPY 2 ​Imaging ​Biomarker ​Subgroup to provide a forum where imaging scientists and radiologists can explore,​ discuss, and strategize on the use of I-SPY 2 MRI data ​available through TCIA. ​Please access https://forms.office.com/r/u0xzwB9kbU to be considered to join our bimonthly Zoom meeting invite list.

Data Access

Version 1: Updated 2022/05/02

Title Data Type Format Access Points Subjects Studies Series Images License
Images SEG, MR DICOM
Download requires NBIA Data Retriever
719 2,688 32,411 5,586,493 CC BY 4.0
Images I-SPY2 Imaging Cohort 1 dataset, (719 I-SPY2 cases plus 266 ACRIN-6698 cases) SEG, MR DICOM
Download requires NBIA Data Retriever
985 3,677 43,356 7,575,549 CC BY 4.0
Clinical spreadsheet for I-SPY2 Imaging Cohort 1 dataset, 985 cases (719 I-SPY2 cases plus 266 ACRIN-6698 cases) XLSX 985 CC BY 4.0
Multi-feature MRI NACT Data XLSX 384 CC BY 4.0
Analysis mask files description Other DOCX CC BY 4.0
ACRIN 6698 ISPY2 Shared Private Tag Data Dictionary Other XLSX CC BY 4.0
ACRIN-6698 ISPY2 DWI and DCE-MRI Data Description and Data Dictionary Other PDF CC BY 4.0
Related Datasets
No related Analysis Results found: Submit your proposal! No related Collections found
Legend: Analysis Results| Collections

Additional Resources for this Dataset

The NCI Cancer Research Data Commons (CRDC) provides access to additional data and a cloud-based data science infrastructure that connects data sets with analytics tools to allow users to share, integrate, analyze, and visualize cancer research data.

The following external resources are not hosted or supported by TCIA, but may be useful to researchers utilizing this collection.

Citations & Data Usage Policy

Data Citation Required: Users must abide by the TCIA Data Usage Policy and Restrictions. Attribution must include the following citation, including the Digital Object Identifier:

Data Citation

Li, W., Newitt, D. C., Gibbs, J., Wilmes, L. J., Jones, E. F., Arasu, V. A., Strand, F., Onishi, N., Nguyen, A. A.-T., Kornak, J., Joe, B. N., Price, E. R., Ojeda-Fournier, H., Eghtedari, M., Zamora, K. W., Woodard, S. A., Umphrey, H., Bernreuter, W., Nelson, M., … Hylton, N. M. (2022). I-SPY 2 Breast Dynamic Contrast Enhanced MRI Trial (ISPY2)  (Version 1) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.D8Z0-9T85

Data Citation

Newitt, D. C., Partridge, S. C., Zhang, Z., Gibbs, J., Chenevert, T., Rosen, M., Bolan, P., Marques, H., Romanoff, J., Cimino, L., Joe, B. N., Umphrey, H., Ojeda-Fournier, H., Dogan, B., Oh, K. Y., Abe, H., Drukteinis, J., Esserman, L. J., & Hylton, N. M. (2021). ACRIN 6698/I-SPY2 Breast DWI [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.KK02-6D95

Detailed Description

MRI Studies

Trial time points for MRI studies

MRI studies were performed at up to four time points in the course of NAC:

  1. Pre-treatment (T0, optional test/retest visit)
    Prior to randomization patients received an MRI study including T2weighted, DWI, and dynamic contrast-enhanced (DCE) acquisitions.

For patients randomized onto a treatment or control arm of I‑SPY 2 subsequent MRI studies with the same required acquisitions were performed:

  1. Early-treatment (T1, optional test/retest visit)
    After 3 weeks of regimen 1 treatment (Paclitaxel with or without an experimental agent).
  2. Mid-treatment (T2)
    Between Paclitaxel and Anthracycline (AC) treatment regimens
  3. Post-treatment (T3)
    Following 4 cycles AC and prior to surgery.

Figure 1. I-SPY 2 study schema.

Imaging protocol and included original image series

MR imaging was performed on a 1.5 or 3.0 Tesla scanner using a dedicated breast radiofrequency coil. All studies for a given patient were required to be performed on the same scanner configuration (model, field strength and breast coil model). Subjects were imaged in the prone position. The image acquisition protocol included a localization scan and two acquisitions:

  1. T2weighted sequence
  2. T1weighted DCE (80sec < phase duration < 100sec with at least 8 minutes continuous post-injection acquisition)

The DWI acquisitions (b=0, 100, 600, 800 s/mm2 OR b=0, 800) were also acquired but are undergoing quality review and are not included in the collection at this time.

Protocol limits on scan parameters for these required acquisitions are given in an accompanying document

All required imaging was performed axially with full bilaterally coverage. For the TCIA collection all original images from the two acquisitions are included. Derived images submitted with the study including reformats, CAD software outputs and MIP images are not part of the collection. For the T2weighted acquisitions multiple series are included if they were generated as part of the standard reconstruction process on the scanner. For example, acquisitions utilizing Dixon techniques to create separate fat and water images will have multiple T2weighted series in the collection.

Derived object series:

Derived objects from the DCE acquisitions are included for the convenience of the user. Some of these are not strictly DICOM compliant and may not be readable by all DICOM software packages. Parametric maps and segmentations are believed to be identical to those utilized in the primary analyses of the I-SPY 2 Trial, but in some cases modifications may have occurred in subsequent processing.

DCE “Package” for each study
  1. Single-breast ipsilateral cropped DCE images
    1. As this was done primarily for computational efficiency, low matrix-sized images (<384 voxels per row) were stored and processed without cropping
    2. All maps and segmentations are based on these cropped images
  2. Enhancement maps
    1. PEearly: Percent enhancement at effective post-contrast time 120-150 sec
    2. PElate: Percent enhancement at effective post-contrast time ~450 sec
    3. SER: Signal enhancement ratio    SER =  PEearly / PElate
      Note: SER values were scaled by 1000 to allow integer storage. DICOM software utilizing the rescale slope and intercept fields [ DICOM fields (0028, 1052-1054)] should return the original SER values in the range from 0.0 – 3.0.
    4. All maps are stored as DICOM MRI objects
  3. Functional Tumor Volume (FTV) analysis mask
    1. Image storing FTV masking processes on a pixel-by-pixel basis. The mask encodes:
      1. Pre-contrast background thresholding
      2. Minimum PE thresholding (70% nom.)
      3. Manually defined rectangular volume of interest (VOI) for enhancing tumor analysis
      4. Manually defined “OMIT” regions used to exclude non-tumor enhancing regions that encroached on the rectangular VOI
    2. Stored as DICOM SEG object in a separate series (see Table 1)
    3. Download Analysis mask files description for further information:

These DCE derived series can be identified either by Series Description (0008,103e) or by Series Number (0020,0011). See Table 1 for series identification details.

Table 1. Series identification for derived DCE objects

Data type

Series number

Series Description Match

DCE     root directory # Siemens, GEMS:  <root> = 1st original DCE series number

Philips:  <root> = Original DCE series number / 100

SER Map <root>1000 ISPY2: VOLSER: uni-lateral cropped: SER 2
PE phase <n> Map <root>100<n> ISPY2: VOLSER: uni-lateral cropped: PE<n> 2
Ipsilateral cropped Original <root>1800 ISPY2: VOLSER: uni-lateral cropped: original DCE 2
FTV Analysis Mask1 <root>1900 ISPY2: VOLSER: uni-lateral cropped: Analysis Mask 2
  1. FTV Analysis Masks are bit-encoded segmentations encoding all masking steps in the I‑SPY 2 primary FTV analysis. See document Analysis mask files description for a full description of these objects.
  2. DCE images with less than 384 voxels/row were not cropped for the FTV analysis. For these studies the derived DCE objects are all full bilateral images.

DICOM Dictionary for UCSF Private Attributes in Derived Objects:

Calculation parameters and DCE volume analysis results are included in private attributes in some of the derived objects. ACRIN 6698 ISPY2 Shared Private Tag Data Dictionary and ACRIN 6698 ISPY2 DWI and DCE MRI Data Descriptions files are provided for download for researchers wishing to use these parameters and/or results from the primary analyses. Note: the DCE functional tumor volume (FTV) results stored in the SER derived objects are NOT identical to those used in the I‑SPY 2 study due to differences in implementations on different platforms (UCSF in-house software vs. Hologic Inc. AEGIS system). While the differences are generally small and the AEGIS system was validated against the UCSF results in the prior I‑SPY 1 TRIAL, identical results cannot be guaranteed.

Acknowledgements

The I-SPY2 Breast MRI Collection is supported by NIH grants U01 CA225427, R01 CA132870 and P01 CA210961. The I-SPY 2 TRIAL is supported by the Quantum Leap Healthcare Collaborative. The authors gratefully acknowledge and thank the patients who have volunteered to participate in the I-SPY2 TRIAL, as well as the extensive network of investigators, patient advocates and study coordinators. We especially thank the site radiology teams that have contributed substantially to the value of this archive.

Related Publications

Publications by the Dataset Authors

The authors recommended this paper as the best source of additional information about this dataset:

  • Li, W., Newitt, D. C., Gibbs, J., Wilmes, L. J., Jones, E. F., Arasu, V. A., Strand, F., Onishi, N., Nguyen, A. A.-T., Kornak, J., Joe, B. N., Price, E. R., Ojeda-Fournier, H., Eghtedari, M., Zamora, K. W., Woodard, S. A., Umphrey, H., Bernreuter, W., Nelson, M., … Hylton, N. M. (2020). Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL. In npj Breast Cancer (Vol. 6, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41523-020-00203-7

No publications by dataset authors were found.

Publication Citation

Li, W., Newitt, D. C., Gibbs, J., Wilmes, L. J., Jones, E. F., Arasu, V. A., Strand, F., Onishi, N., Nguyen, A. A.-T., Kornak, J., Joe, B. N., Price, E. R., Ojeda-Fournier, H., Eghtedari, M., Zamora, K. W., Woodard, S. A., Umphrey, H., Bernreuter, W., Nelson, M., … Hylton, N. M. (2020). Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL. In npj Breast Cancer (Vol. 6, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41523-020-00203-7

Research Community Publications

TCIA maintains a list of publications which leverage TCIA data. If you have a publication you’d like to add please contact TCIA’s Helpdesk.

Other Publications Using this Data

TCIA maintains a list of publications which leverage TCIA data. If you have a publication you’d like to add please contact TCIA’s Helpdesk.