Notice: Function Pods Templates was called incorrectly. Pod Template PHP code is no longer actively supported and will be completely removed in Pods 3.3 Please see Debugging in WordPress for more information. (This message was added in version 3.0.) in /var/www/html/wp-includes/functions.php on line 6085
Deprecated: Pod Template PHP code has been deprecated, please use WP Templates instead of embedding PHP. has been deprecated since Pods version 2.3 with no alternative available. in /var/www/html/wp-content/plugins/pods/includes/general.php on line 1037
SN-AM | SN-AM Dataset: White Blood cancer dataset of B-ALL and MM for stain normalization
DOI: 10.7937/tcia.2019.of2w8lxr | Data Citation Required | Image Collection
Location | Species | Subjects | Data Types | Cancer Types | Size | Status | Updated |
---|---|---|---|---|---|---|---|
Blood and Bone | Human | 60 | Histopathology | Leukemia, Multiple Myeloma | Public, Complete | 2019/03/26 |
Summary
Microscopic images were captured from bone marrow aspirate slides of patients diagnosed with B-lineage Acute Lymphoid Leukemia (B-ALL) and Multiple Myeloma (MM) as per the standard guidelines. Slides were stained using Jenner-Giemsa stain. Images were captured at 1000x magnification using Nikon Eclipse-200 microscope equipped with a digital camera. Images were captured in raw BMP format with a size of 2560x1920 pixels. In all, this dataset consists of 90 images of B-ALL and 100 images of MM. Both MM and B-ALL images have sufficient variability from one image to another image to rigorously test any stain normalization methodology developed. More information about each subset are provided on the Detailed Description tab below.
Data Access
Version 1: Updated 2019/03/26
Title | Data Type | Format | Access Points | Subjects | License | |||
---|---|---|---|---|---|---|---|---|
Slide Images | Histopathology | BMP | Download requires IBM-Aspera-Connect plugin |
16 | 60 | 190 | CC BY 3.0 |
Citations & Data Usage Policy
Data Citation Required: Users must abide by the TCIA Data Usage Policy and Restrictions. Attribution must include the following citation, including the Digital Object Identifier:
Data Citation |
|
Gupta, A., & Gupta, R. (2019). SN-AM Dataset: White Blood Cancer Dataset of B-ALL and MM for Stain Normalization [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/tcia.2019.of2w8lxr |
Detailed Description
Data subset-1: ALL images
Microscopic images were captured from bone marrow aspirate slides of patients diagnosed with B-lineage Acute Lymphoblastic Leukemia (B-ALL). Slides were stained using Jenner-Giemsa stain and lymphoblasts, that are cells of interest, have been evaluated. Images were captured in raw BMP format with a size of 2560×1920 pixels using Nikon Eclipse-200 microscope equipped with a digital camera at 1000x magnification. In all, this dataset consists of 30 images, wherein one image has been used as the reference image and the proposed stain normalization method has been tested on 29 images. For each of these 30 images, we have also provided two additional images that contain the nucleus mask and the background mask, respectively, for that particular image. For example, if the original file is saved with the name “ALL_1.bmp”, the corresponding image with mask on the nuclei is saved as “ALL_1_nucleus_mask.bmp”, and the corresponding image with mask on the background is saved as “ALL_1_background_mask.bmp Thus, in all, we have 90 images for this dataset.
Data subset-2: MM images
The third data subset contains microscopic images captured from slides prepared from bone marrow aspirate collected from patients with Multiple Myeloma (MM). Slides are stained using Jenner-Giemsa stain and plasma cells, that are cells of interest, have been evaluated. A total of 30 images have been considered, wherein one image has been used as the reference image to which 29 images have been stain normalized. For each of these 30 images, we have also provided two additional images that contain the nucleus mask and the background mask, respectively, for that particular image. For example, if the original file is saved with the name “MM_1.bmp”, the corresponding image with mask on the nuclei is saved as “MM_1_nucleus_mask.bmp”, and the corresponding image with mask on the background is saved as “MM_1_background_mask.bmp. In addition, for 17 images, the mask images are also provided for the cytoplasm of the plasma cells, namely, “MM_1_cyto_mask.bmp. Thus, in all, we have 100 images for this dataset.
Related Publications
Publications by the Dataset Authors
The authors recommended this paper as the best source of additional information about this dataset:
Gupta, A., Duggal, R., Gehlot, S., Gupta, R., Mangal, A., Kumar, L., Thakkar, N., & Satpathy, D. (2020). GCTI-SN: Geometry-inspired chemical and tissue invariant stain normalization of microscopic medical images. In Medical Image Analysis (Vol. 65, p. 101788). Elsevier BV. https://doi.org/10.1016/j.media.2020.101788
Gupta, A., Mallick, P., Sharma, O., Gupta, R., & Duggal, R. (2018). PCSeg: Color model driven probabilistic multiphase level set based tool for plasma cell segmentation in multiple myeloma. In Y. Wang (Ed.), PLOS ONE (Vol. 13, Issue 12, p. e0207908). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0207908
No publications by dataset authors were found.
Research Community Publications
- Ritu Gupta, Pramit Mallick, Rahul Duggal, Anubha Gupta, and Ojaswa Sharma, “Stain Color Normalization and Segmentation of Plasma Cells in Microscopic Images as a Prelude to Development of Computer Assisted Automated Disease Diagnostic Tool in Multiple Myeloma,” 16th International Myeloma Workshop (IMW), India, March 2017.
- Rahul Duggal, Anubha Gupta, Ritu Gupta, and Pramit Mallick, “SD-Layer: Stain Deconvolutional Layer for CNNs in Medical Microscopic Imaging,” In: Descoteaux M., Maier- Hein L., Franz A., Jannin P., Collins D., Duchesne S. (eds) Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017, MICCAI 2017. Lecture Notes in Computer Science, Part III, LNCS 10435, pp. 435–443. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-66179-7_50 .
- Rahul Duggal, Anubha Gupta, Ritu Gupta, Manya Wadhwa, and Chirag Ahuja, “Overlapping Cell Nuclei Segmentation in Microscopic Images UsingDeep Belief Networks,” Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP), India, December 2016.
TCIA maintains a list of publications which leverage TCIA data. If you have a manuscript you’d like to add please contact TCIA’s Helpdesk.